SISTEM BILANGAN
SISTEM BILANGAN
1. PENGERTIAN SISTEM BILANGAN
Notasi penulisan sistem bilangan adalah (n)basis.
Basis pada sistem bilangan menunjukkan jumlah koefisien atau angka yang terdapat pada bilangan tersebut (dimulai dari 0 dan seterusnya).
Misalnya: sistem bilangan yang kita gunakan sehari-hari adalah desimal.
Sistem bilangan desimal mempunyai basis 10 yaitu terdiri dari koefisien 0-9.
2. MACAM-MACAM SISTEM BILANGAN
Sistem Bilangan Biner
Sistem bilangan biner adalah suatu sistem atau cara menghitung bilangan dengan hanya menggunakan dua simbol angka yaitu ‘0’ dan ‘1’, bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 2 .Sistem bilangan biner digunakan untuk mempresentasikan alat yang mempunyai dua keadaan operasi yang dapat dioperasikan dalam dua keadaan ekstrim.
Notasi bilangan biner dituliskan : (n)2 .
Sistem Bilangan Desimal
Sistem bilangan desimal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan sepuluh simbol angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’ dan ‘9’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 10. Sistem bilangan desimal kurang cocok digunakan untuk sistem digital karena sangat sulit merancang pesawat elektronik yang dapat bekerja dengan 10 level (tiap-tiap level menyatakan karakter desimal mulai 0 sampai 9)
Sistem bilangan desimal adalah positional-value system,dimana nilai dari suatu digit tergantung dari posisinya. Nilai yang terdapat pada kolom ketiga pada Tabel 2.1., yaitu A, disebut satuan, kolom kedua yaitu B disebut puluhan, C disebut ratusan, dan seterusnya. Kolom A, B, C menunjukkan kenaikan pada eksponen dengan basis 10 yaitu 100 = 1, 101 = 10, 102 = 100. Dengan cara yang sama, setiap kolom pada sistem bilangan biner yang berbasis 2, menunjukkan eksponen dengan basis 2, yaitu 20 = 1, 21 = 2, 22 = 4, dan seterusnya.
Sistem Bilangan Oktal
Sistem bilangan oktal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan delapan simbol angka yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,dan ’7’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 8. Sistem bilangan oktal digunakan sebagai alternatif untuk menyederhanakan sistem pengkodean biner. Karena 8 = 23, maka satu (1) digit oktal dapat mewakili tiga (3) digit biner. Notasi bilangan oktal dituliskan : (n)8.
Sistem Bilangan Heksadesimal
Sistem bilangan heksadesimal adalah suatu sistem atau cara menghitung bilangan dengan menggunakan 16 simbol yaitu ‘0’ ,‘1’, ‘2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
’A’,’B’, ’C’,’D’,’E’, dan ‘F’ bilangan ini sering disebut dengan sistem bilangan berbasis atau radix 16. Identik dengan sistem bilangan oktal, sistem bilangan heksadesimal juga digunakan untuk alternatif penyederhanaan sistem pengkodean biner. Karena 16 = 24, maka satu (1) digit heksadesimal dapat mewakili empat (4) digit biner. Notasi bilangan hekasdesimal dituliskan : (n)16.
3. KONVERSI BILANGAN
Konversi bilangan desimal ke biner
Cara untuk mengubah bilangan desimal ke biner adalah dengan membagi bilangan desimal yang akan diubah, secara berturut-turut dengan pembagi 2, dengan memperhatikan sisa pembagiannya. Sisa pembagian akan bernilai 0 atau 1, yang akan membentuk bilangan biner dengan sisa yang terakhir menunjukkan MSBnya. Sebagai contoh, untuk mengubah 5210 menjadi bilangan biner, diperlukan langkah-langkah berikut :
52/2 = 26 sisa 0, LSB
26/2 = 13 sisa 0
13/2 = 6 sisa 1
6/2 = 3 sisa 0
3/2 = 1 sisa 1
½ = 0 sisa 1, MSB
Sehingga bilangan desimal 5210 dapat diubah menjadi bilangan biner 1101002.
Konversi bilangan desimal ke oktal.
Teknik pembagian yang berurutan dapat digunakan untuk mengubah bilangan desimal menjadi bilangan oktal. Bilangan desimal yang akan diubah secara berturut-turut dibagi dengan 8 dan sisa pembagiannya harus selalu dicatat. Sebagai contoh, untuk mengubah bilangan 581910 ke oktal, langkah-langkahnya adalah :
5819/8 = 727, sisa 3, LSB
727/8 = 90, sisa 7
90/8 = 11, sisa 2
11/8 = 1, sisa 3
1/8 = 0, sisa 1, MSB
Sehingga 581910 = 132738
Konversi bilangan desimal ke heksadesimal.
Teknik pembagian yang berurutan dapat juga digunakan untuk mengubah bilangan desimal menjadi bilangan heksadesimal. Bilangan desimal yang akan diubah secara berturut-turut dibagi dengan 16 dan sisa pembagiannya harus selalu dicatat. Sebagai contoh, untuk mengubah bilangan 340810 menjadi bilangan heksadesimal, dilakukan dengan langkah-langkah sebagai berikut :
3409/16 = 213, sisa 110 = 116, LSB
213/16 = 13, sisa 510 = 516
13/16 = 0, sisa 1310 = D16, MSB
Sehingga, 340910 = D5116.
Konversi bilangan biner ke desimal.
Seperti yang terlihat pada tabel 2.1. sistem bilangan biner adalah suatu sistem posisional dimana tiap-tiap digit (bit) biner mempunyai bobot tertentu berdasarkan atas posisinya terhadap titik biner seperti yang ditunjukkan pada tabel 2.3.
Tabel 2.3. Daftar Bobot tiap bit Bilangan Biner dan Ekivalensinya dalam desimal
24
|
23
|
22
|
21
|
20
|
2-1
|
2-2
|
2-3
|
Bobot tiap-tiap bit biner
|
Titik biner
16
|
8
|
4
|
2
|
1
|
0.5
|
0.25
|
0.125
|
Ekivalensinya dalam desimal
|
Titik desimal
Oleh karena itu bilangan biner dapat dikonversikan ke bilangan desimal dengan cara menjumlahkan bobot dari masing-masing posisinya yang bernilai 1.
Cara cepatnya adalah dengan menghitung kelipatan 1,2,4,8,16,32,64,128,dst.. dari digit paling kanan (yang dihitung hanyalah koefisien bernilai 1)
Contoh: 10110001 = 1 0 1 1 0 0 0 1
128 64 32 16 8 4 2 1
Maka hasilnya adalah 1+16+32+128 = 177
Contoh: 10110001 = 1 0 1 1 0 0 0 1
128 64 32 16 8 4 2 1
Maka hasilnya adalah 1+16+32+128 = 177
Biner ke Heksadesimal
Caranya hampir sama dengan biner ke oktal tetapi:
a. pada heksadesimal pengelompokannya adalah 4
b. jika hasilnya >9 maka dilanjutkan dengan A,B,C,D,E,F
a. pada heksadesimal pengelompokannya adalah 4
b. jika hasilnya >9 maka dilanjutkan dengan A,B,C,D,E,F
Misal:
- 10110011(2) = 1011|0011(2)
= 11 3
= 11 3
= B3(16)
Oktal dan Heksadesimal ke Biner
Caranya adalah kebalikan dari cara yang tadi:
konversikan desimal ke biner lalu kelompokkan menurut oktal (tiga digit) atau heksadesimal (empat digit)
Caranya adalah kebalikan dari cara yang tadi:
konversikan desimal ke biner lalu kelompokkan menurut oktal (tiga digit) atau heksadesimal (empat digit)
Misalnya:
- 263(8) = 2 6 3
= 010 110 011
= 010110011(2)
- B3(16) = 11 3
= 1011 0011
= 10110011(2)
D. Komplemen
1. Komplemen 1
Adalah kebalikan dari bilangan biner tersebut:
1 menjadi 0 dan 0 menjadi 1
Adalah kebalikan dari bilangan biner tersebut:
1 menjadi 0 dan 0 menjadi 1
Misalnya:
- 00001100(2) k1 = 11110011(2)
2. Komplemen 2
Adalah komplemen 1 yang hasilnya ditambah dengan 1
Adalah komplemen 1 yang hasilnya ditambah dengan 1
Misalnya:
- 00001100(2) k1 = 11110011(2)
k2 = 11110011(2) + 00000001 = 11110100(2)
Komentar
Posting Komentar